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Abstract

A fourth-order numerical method for the zero-Mach-number limit of the equations for compressible flow is presented.
The method is formed by discretizing a new auxiliary variable formulation of the conservation equations, which is a
variable density analog to the impulse or gauge formulation of the incompressible Euler equations. An auxiliary variable
projection method is applied to this formulation, and accuracy is achieved by combining a fourth-order finite-volume
spatial discretization with a fourth-order temporal scheme based on spectral deferred corrections. Numerical results are
included which demonstrate fourth-order spatial and temporal accuracy for non-trivial flows in simple geometries.
� 2007 Elsevier Inc. All rights reserved.
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1. Introduction

The numerical simulation of physical systems involving compressible gas flow is one of the canonical prob-
lems in computational science and engineering. When the Mach number M (the ratio of the characteristic
velocity to the sound speed) is low, the use of standard explicit numerical methods can become very
0021-9991/$ - see front matter � 2007 Elsevier Inc. All rights reserved.

doi:10.1016/j.jcp.2007.10.008

* Corresponding author. Tel.: +1 919 962 8475; fax: +1 919 962 9345.
E-mail addresses: samet.kadioglu@inl.gov (S.Y. Kadioglu), rupert.klein@zib.de (R. Klein), minion@amath.unc.edu (M.L. Minion).
URL: http://amath.unc.edu/Minion (M.L. Minion).

1 Author was supported by the Director, DOE Office of Science, Office of Advanced Scientific Computing Research, Office of
Mathematics, Information, and Computational Sciences, Applied Mathematical Sciences Program, under Contract DE-AC03-76SF00098.

2 Author thanks Deutsche Forschungsgemeinschaft for their support through Grants KL 611/6, KL 611/14.
3 Author was supported by the Alexander von Humboldt Foundation and the Director, DOE Office of Science, Office of Advanced

Scientific Computing Research, Office of Mathematics, Information, and Computational Sciences, Applied Mathematical Sciences
Program, under Contract DE-AC03-76SF00098.

mailto:samet.kadioglu@inl.gov
mailto:rupert.klein@zib.de
mailto:minion@amath.unc.edu
http://amath.unc.edu/Minion


S.Y. Kadioglu et al. / Journal of Computational Physics 227 (2008) 2012–2043 2013
computationally expensive due to the fact that the time step must scale like M. Numerical strategies have been
developed to circumvent this problem [77,8,73,58,55], but an alternative is to actually employ a numerical
method which approximates the equations which result from passing to the zero-Mach number limit (hereafter
referred to more simply as the zero-Mach equations). Physically, this means that fast acoustic waves are
removed from the system, so this procedure is appropriate when acoustic waves do not contribute to the rel-
evant dynamics being studied. The numerical implication of solving the zero-Mach equations is that the time
step used can be hundreds or even thousands of times larger than if an explicit method for the compressible
equations were used.

Examples of systems where the use of the zero-Mach equations has proven successful in numerical simu-
lations include, first of all, those systems for which the use of the incompressible, constant density Euler or
Navier–Stokes equations, or the Boussinesq approximation represent an appropriate model. Zero-Mach equa-
tions allowing for variable density are of relevance, e.g., for technical combustion systems, [5,6,53,36], astro-
physical phenomena such as Type Ia Supernovae, [2,3], or atmospheric flows, [56,43,23,9,35]. In these
applications, Mach numbers vary within the range M � 0.01, . . . , 0.1. For many atmospheric and astrophys-
ical applications, gravity is dominant with the consequence that the leading order density becomes strictly
stratified along the direction of gravity, leading to the class of ‘‘anelastic’’ model equations. Here we focus
on the zero-Mach number limit equations obtained when the influence of gravity is moderate. In that case,
the leading order density is advected with the fluid.

In the zero-Mach limit, the hyperbolic compressible equations undergo a change of type and, depending on
which set of primary variables is used, the energy, pressure, or mass conservation equation turns into a diver-
gence constraint on the velocity [56,43,47,34]. The zero-Mach equations are indeed the correct variable-density
analog to the incompressible Euler equations. It is no surprise then, that many existing numerical methods for
the zero-Mach equations are extensions of methods designed for the incompressible Euler or Navier–Stokes
equations.

Projection methods for incompressible flows, (see e.g. [17,72,33,4,29,11,30]) have been an attractive option
in numerical flow simulation because of their efficiency. During one time step for a typical projection method,
the most computationally expensive step is usually the solution of a Poisson equation related to the pressure
field which guarantees compliance with the velocity divergence constraint. Hence, projection methods achieve
a low-computational cost by avoiding iterations coupling the pressure and momentum fields as needed in, e.g.,
SIMPLE-type pressure correction methods (see e.g., [59,32,8,77]). Extensions of projection methods for var-
iable density or zero-Mach flows have also been developed (see e.g. [7,53,62,54,1,68]).

The original projection method proposed by Chorin [17] is first-order accurate in time, and many second-
order extensions have appeared since (some of the first being [33,74,4]). One difficulty in extending projection
methods to temporal orders higher than two is that they are typically thought of as fractional step schemes. Spe-
cifically, one time step to update the numerical approximation to the velocity v proceeds by first computing a
provisional value v* by approximating the momentum equation and then applying a numerical projection to
extract the divergence-free part of v*. In [50,51], an auxiliary variable equation is introduced which provides
an explicit, unconstrained evolution equation for v*. Since v* does not obey a divergence constraint, a fractional
step approach is not necessary, and a higher-order scheme based on the method of lines can be directly applied to
the equation for v*. Auxiliary variable equations are closely related to impulse or gauge variables (see the review
in [66]), and were used in [11] to analyze appropriate boundary conditions for semi-implicit projection methods
for the Navier–Stokes equations. Higher-order projection methods based on auxiliary variables utilize an
impulse type equation for the auxiliary variables within any given time step but avoid the observed difficulties
of methods based solely on impulse variables by reinitializing the auxiliary variables to the velocity (or momen-
tum) after each time step. This distinction is addressed in more detail in Section 3.1.1. Until now, neither aux-
iliary variable equations nor the related gauge or impulse equations have been extended to variable density flows.

In this paper we introduce a new extension to the auxiliary variable equations in [50,51] appropriate for the
zero-Mach, variable density case. The new equations are in conservation form and give an explicit evolution
equation for an unconstrained auxiliary variable m* which is a momentum variable analog to an impulse var-
iable. In Sections 2.1–2.3, we provide an overview of the equations of motion, including projection and
impulse formulations for the constant density case. This lays the framework for the derivation of the new aux-
iliary variable equations in Section 2.4.
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We construct a numerical method with fourth-order accuracy in both space and time by coupling a new
fourth-order discretization of the finite-volume formulation of the auxiliary variable equations with a tempo-
ral integration scheme based on spectral deferred corrections. A detailed description of the numerical method
including the rationale for why spectral deferred corrections is used is given in Section 3.

In Section 4 a series of numerical tests are presented which demonstrate the accuracy of the numerical
method for problems with non-trivial dynamics. The current implementation is limited to simple geometries
in two dimensions. Also included is an accuracy comparison of the current method with the second-order, pro-
jection-type scheme described in [68].

Although the current paper describes only a method for zero-Mach number flows, the design of the
numerical method is motivated by zero-Mach number asymptotics for the compressible flow equations in
the spirit of [34,68,35,52], thereby laying the foundation for future extensions to zero and low Mach number
reactive flows, atmospheric flows, etc. A discussion of the challenges involved in these extensions is taken up in
Section 5.
2. Governing equations

The numerical method presented here is part of a larger project to develop higher-order numerical methods
for the equations governing low-Mach number reacting flow. Although in the current study we consider only
the much simpler case of zero-Mach number, non-reacting flows, we present the equations and the numerical
method in a manner which most closely corresponds to the more general case.

2.1. The Euler equations and the zero-Mach number limit

Our starting point is given by the mass, momentum, and energy conservation laws for an ideal gas with
constant specific heat capacities. Non-dimensionalizing using characteristic values for length, ‘ref, velocity, uref,
pressure, pref, and density, qref, and scaling time by a typical advection time scale tref = ‘ref/uref, we are left with
a single dimensionless characteristic number, the Mach number
M ¼ uref

cref

where cref ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pref=qref

p
: ð1Þ
Then, the conservation laws for the density q, the momentum m and the energy e read
qt ¼ �r � ðqvÞ; ð2Þ

mt ¼ �r � qv � vþ 1

M2
Ip

� �
; ð3Þ

et ¼ �r � ððeþ pÞvÞ; ð4Þ
where
e ¼ p
c� 1

þM2 qv � v
2

ð5Þ
is the equation of state needed to close the system in (2)–(4).
Following the asymptotic analysis in [34], we pass to the limit of vanishing Mach number while keeping the

conservative form of the equations. The resulting limiting conservation laws are
qt ¼ �r � ðqvÞ; ð6Þ
mt ¼ �r � ðqv � vþ Ipð2ÞÞ; ð7Þ
_P 0 ¼ �r � ðcP 0vÞ: ð8Þ
In these equations, P0(t) is the prescribed, spatially homogeneous leading order pressure.
Note that it is the energy equation (4) which becomes the velocity divergence constraint (8). Compliance

with this constraint is guaranteed by an appropriate adjustment of p(2), which is the second-order contribution
in an asymptotic expansion of the pressure p from (2)–(5) in terms of the Mach number. This variable is not
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determined through an equation of state, but rather serves as a Lagrangian multiplier for the constrained
problem. In a slight abuse of notation, we will refer to p(2) simply as p from here on.

Several prominent numerical methods for the zero-Mach number equations discussed in the following sec-
tion are based on the non-conservative form of the zero-Mach number equations
qt ¼ �r � ðqvÞ; ð9Þ

vt þ
1

q
rp ¼ �ðv � rÞv; ð10Þ

r � v ¼ � _P 0=cP 0: ð11Þ
In the remainder of this paper, we take P0(t) ” 1, so that the velocity v = m/q is divergence-free according to
(8) or (11). The above equations can then be further simplified to
qt ¼ �ðv � rÞq; ð12Þ

vt þ
1

q
rp ¼ �ðv � rÞv; ð13Þ

r � v ¼ 0: ð14Þ
2.2. Projection formulations

When the density in Eqs. (6)–(8) is constant in space and, with P0 ” 1, also in time, Eqs. 10,11 simplify to
the incompressible, constant density Euler equations, for which existing auxiliary variable and projection
approaches were first developed. Without loss of generality, we let q ” 1, and therefore
vt þrp ¼ �ðv � rÞv; ð15Þ
r � v ¼ 0: ð16Þ
One popular manner to facilitate the construction of numerical methods for Eqs. 15,16 is to cast them in the
following projection formulation
vt ¼ P½�ðv � rÞv�; ð17Þ

where P is the operator which projects a velocity field onto the space of divergence-free flows. P can be defined
through the solution of a Poisson problem by P(w) = w � $/ where
r2/ ¼ r � w: ð18Þ

In bounded domains, Neumann boundary conditions for Eq. (18) enforce a boundary condition on the nor-
mal component of the velocity.

The operator P can also be thought of as returning the divergence-free part of the Hodge or Helmholtz
decomposition of a vector field. Hence, Eq. (17) results directly from applying P to both sides of Eq. (15).
The significant feature of Eq. (17) is that the divergence constraint contained in Eq. (16) is implied by the pro-
jection and hence omitted.

Projection methods (see Section 3.1) utilize Eq. (17) to construct a numerical approximation by first com-
puting an intermediate quantity (usually denoted v*) using Eq. (15), without regard to the divergence con-
straint (16), and then using a discretized form of the projection operator P to extract the discretely
divergence-free (or approximately so) velocity from v*.

A common strategy for extending projection methods designed for the constant density equations to var-
iable density is to begin with the form of the Eqs. (9)–(11), see, e.g., [7,53,54]. The left hand side of the equa-
tion for v (either Eq. (10) or (13)) is no longer in the form of the standard Helmholtz decomposition, but this
equation can still be transformed into a projection form analogous to Eq. (17). Let the operator Pq(w) be
defined by
PqðwÞ ¼ w�r/
q
; ð19Þ
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where / is the solution of
r � r/
q

� �
¼ r � ðwÞ: ð20Þ
By construction, the quantity v = Pq(w) satisfies the divergence constraint (11), and hence applying Pq to both
sides of Eq. (13) yields the variable density analog with Eq. (17)
qt ¼ �ðv � rÞq; ð21Þ
vt ¼ Pq½�ðv � rÞv�: ð22Þ
Note that in both the constant density and variable density projection formulations above, the projection
operator (either P or Pq) enforces a boundary condition on the normal component of the velocity at domain
boundaries.

2.3. Gauge, impulse, and auxiliary variables

In order to develop numerical methods with higher temporal order of accuracy, it is useful to consider an
analog to the auxiliary variable formulation of the Euler equations. Auxiliary variables are closely related to a
class of equations first introduced by Oseledets [57] which provide an equivalent form of the Euler equations in
terms of a variable which does not satisfy the divergence constraint but from which the incompressible velocity
can be recovered (by way of the Hodge or Helmholtz decomposition). Different formulations and names for
such variables have been proposed by different authors including velocity, magnetization, impetus, impulse,
impulse density, and gauge variables [12,13,46,21,22,25,26]. For the remainder of this paper, we adapt the lan-
guage of [66] and use the terminology impulse variables for such variables. Both Lagrangian [12,20,21,63,71]
and Eulerian [26,25,50] numerical methods based on impulse variables have been developed for various prob-
lems although to date this idea has never been adapted to variable density or low-Mach number flows.

A general overview is given in [66] in which a form of the equation for impulse variables is presented which
contains an arbitrary gauge. Specifically, the starting point is the equivalent form of Eq. (15)
vt ¼ v� ðr � vÞ � r p þ 1

2
v � v

� �
: ð23Þ
Then, defining a new variable v* = v + $/, an equivalent equation is
v�t ¼ v� ðr � v�Þ � r p þ 1

2
v � v� o/

ot

� �
: ð24Þ
Since $/ is arbitrary, this can be rewritten simply as
v�t ¼ v� ðr � v�Þ þ rK; ð25Þ

where K is the gauge. The pertinent point is that for any choice of gauge K, given suitable initial and boundary
conditions, P(v*) = v for all time where v is the solution to the incompressible Euler Eqs. (15) and (16). Fur-
thermore, the correct pressure can be recovered from the solution of Eq. (25) by
o/
ot
¼ p þ 1

2
u � uþ K: ð26Þ
The appropriate choice of gauge necessary to create many of the governing equations from the references cited
above is also presented in [66].

Following the construction for viscous flows in [50], a connection can be made between projection methods
and impulse variables. Given initial conditions v(x, 0) for the Euler equations (15) and (16), let the solution be
denoted v(x, t) with pressure p(x, t). Now let u*(x, 0) = v(x, 0), and consider the equation
u�t ¼ �ðu � rÞu�rq; ð27Þ

where $q is an explicitly prescribed approximation to the pressure gradient $p, and
u ¼ Pðu�Þ:
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Clearly if $q = $p then u* = u = v; however, $p is in general not known apriori. Nevertheless, it follows that
u = P(u*) = v regardless of how well $q approximates $p since Eq. (27) is an impulse formulation in the lan-
guage of [66] with gauge
K ¼ � 1

2
u � u� q:
Therefore the pressure can also be reconstructed from
rp ¼ rqþr/t; ð28Þ

where u* = u + $/.

In [11], it is observed that rather than thinking of a single time step of a projection method as a fractional
step scheme with a temporary numerical variable called v*, one can instead consider the method as a consistent
disretization of an auxiliary variable equation with v* satisfying (27). This point of view then gives a precise
mathematical description of the proper boundary conditions for the variable v*, a subject that has generated
a great deal of controversy in the literature. Section 3.1 details how auxiliary variables are combined with the
method of lines to construct methods with higher-order temporal accuracy.

2.4. Auxiliary variables for the zero-Mach equations

In the previous section, a connection is made between the projection formulation of the constant density
Euler equations, impulse equations, and auxiliary variable equations. To our knowledge, such observations
have only to date been made for constant density flows. We present a variable density analog to the auxiliary
variable equations now.

Consider forming a set of auxiliary variable equations based on Eqs. (6) and (7). To this end, define an ana-
log to the variable density projection operator Pq which acts on momentum variables rather than velocity vari-
ables. Let Qq(w) = w � $/ where
r � r/
q

� �
¼ r � w

q

� �
: ð29Þ
Now let
qt ¼ �r � ðvqÞ; ð30Þ
m�t ¼ �r � ðqv � vþ IqÞ; ð31Þ
where
v ¼
Qqðm�Þ

q
: ð32Þ
Again it is clear that choosing $q = $p would imply m* = m.
When $q 6¼ $p however, m* 6¼ m, but as in the constant density case, m and hence v can be derived from m*

through the variable density projection Qq. Let
m�t ¼ mt þrv; ð33Þ

where $v = $(p � q). Then
m ¼ Qqðm�Þ ¼ m� � r/; ð34Þ
where
r/ ¼
Z t

t0

rvds: ð35Þ
This is simply an integral form of Eq. (28). Note also, that in the presence of solid wall boundaries, the pro-
jection Qq imposes a normal boundary condition on m, and hence there is an additional freedom in the bound-
ary condition for m*. In the numerical method discussed below, no boundary condition for m* is imposed (as is
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also the case with the density q). A discussion of the numerical treatment of the boundary conditions appears
in Section 3.2.4.

3. The numerical method

In this section we present an overview of the different concepts synthesized to create the numerical method.
An overview of auxiliary variable projection methods, spectral deferred corrections, and finite-volume meth-
ods are first presented, followed by a concise outline of the numerical method in Section 3.4. Finally, a dis-
cussion comparing and contrasting alternative strategies to that employed here is presented.

3.1. Auxiliary variable projection methods

In this section, we first review the connection between projection methods and auxiliary variable projection
methods for constant density flows. Then a discussion of auxiliary variable projection methods for the zero-
Mach equations is presented. In this section the equations are discretized in time only leaving the spatial deriv-
ative operators continuous. The spatial discretization is taken up in Section 3.2.

3.1.1. Constant density auxiliary variable projection methods

Projection methods, which were introduced in the late 1960s [17,16,72], are a popular class of methods for
numerically approximating the equations of incompressible flow. This popularity stems largely from the fact
that, in projection methods, the numerical approximation to the time evolution of the momentum equation
(e.g. Eq. (15)) is decoupled from the numerical procedure to enforce the divergence constraint (e.g. Eq.
(16)). The basic strategy by which this is accomplished is as follows. To advance the solution for the velocity
v, a suitable discretization of Eq. (15) is used without regard to the divergence constraint Eq. (16). This yields a
provisional update, which for reasons that should become clear, we denote v*. Then a discretization of the
projection operator P is applied to v* to enforce Eq. (16) and provide the temporal update to v. For this reason
projection methods are often referred to as fractional step methods.

To illustrate, we present a first-order temporal approximation to the Eqs. (15) and (16). Let vn denote the
numerical approximation to the velocity at time tn, and consider the following method for computing vn+1.
Denoting Dt = tn+1 � tn, let
v� ¼ vn þ Dt½�ðvn � rÞvn �rpn� ð36Þ
and
vnþ1 ¼ Pðv�Þ: ð37Þ

The latter equation is equivalent to
vnþ1 ¼ v� � r/; ð38Þ

where
r2/ ¼ r � v�: ð39Þ

Finally, a first-order temporal approximation to $pn+1 is given by
rpnþ1 ¼ rpn þr/
Dt

: ð40Þ
The above procedure, wherein the nonlinear advective terms are treated explicitly, requires only the solution
of a standard Poisson problem to enforce the divergence constraint on the velocity vn+1.

In [11], it is observed that rather than thinking of a single time step of a projection method as a fractional
step scheme with auxiliary variable v*, one can instead consider the projection method as a consistent discret-
ization of an auxiliary variable equation where the variable v* satisfies an appropriate gauge formulation.
Unlike in a direct discretization of an impulse equation, in a projection method v* is reset to the value v

(i.e. $/ is reset to 0) at the beginning of each time step.
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To make this connection clear, consider a first-order temporal discretization to Eq. (27). Let u*,n denote the
auxiliary variable at the beginning of the time step with u*,n = vn where vn is some divergence-free approxima-
tion to the incompressible Euler equations. Since u*,n is divergence-free, u*,n = P(u*,n) = un and $/n = 0. Fur-
thermore, let $q = $pn, be the arbitrary gradient term in Eq. (27) (which is in this case constant in time). Then
a first-order auxiliary variable projection method is
u�;nþ1 ¼ u�;n þ Dt½�ðun � rÞun �rqn�: ð41Þ

By definition
unþ1 ¼ Pðu�;nþ1Þ; ð42Þ

which is equivalent to
unþ1 ¼ u�;nþ1 �r/nþ1; ð43Þ

where
r2/nþ1 ¼ r � u�;nþ1: ð44Þ

Finally, using Eq. (28), a first-order temporal approximation to $pn+1 is given by
rpnþ1 ¼ rqn þr/nþ1 �r/n

Dt
: ð45Þ
Recalling that $/n = 0, and $qn = $pn, we see Eqs. (41)–(45) are identical to Eqs. (36)–(40). However, in a
projection or auxiliary variable method, the next time step would again start with u*,n+1 = vn+1 (i.e. the U*

variable is reset), whereas in an impulse variable formulation, u* is allowed to evolve as an independent var-
iable. As discussed in [66], in many cases, the evolution of impulse variables leads to a concentration of im-
pulse along sheets which causes a lack of resolution for numerical methods.

For the first-order method above, the difference between projection methods and auxiliary variable
methods is largely semantic. However, the advantage of using an auxiliary variable approach over a
traditional fractional step projection method becomes clear when one considers a higher-order temporal
discretization method. In the auxiliary variable approach, higher-order temporal methods can be directly
applied to the equation for u* by using the impulse variable equations and the methods of lines, since
the auxiliary variable is not subject to a divergence constraint. This avoids the complication of finding a
temporally higher-order formulation of the fractional-step approach used in projection methods. In
practice one could use any higher-order temporal integration scheme in the auxiliary variable approach,
however, the choice of using spectral deferred corrections has certain advantages discussed below in
Section 3.3. This strategy is exploited in [50,48] to construct auxiliary variable projection methods
with up to sixth-order temporal accuracy for constant density flows. The same idea is also used in
[45,65].

3.1.2. zero-Mach auxiliary variable projection methods

The numerical method for the zero-Mach equations presented in this paper is based on an extension of the
constant density auxiliary variable method presented above. In a given time step, one begins with an approx-
imation to $p embodied in $q and then solves the auxiliary variable equations 30,31 in conservation form
using a spectral deferred correction method which is described in Section 3.3.

A first-order auxiliary variable projection method is defined as follows. Given values of qn, mn, and qn,
respectively density, momentum and a pressure approximation at time tn, let m*,n = mn. Then
qnþ1 ¼ qn þ Dt½�r � ðqnvnÞ�; ð46Þ
m�;nþ1 ¼ m�;n þ Dt½�r � ðqnvn � vn þ IqnÞ�: ð47Þ
By definition
vnþ1 ¼
Qqnþ1ðm�;nþ1Þ

qnþ1
; ð48Þ
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which is equivalent to
mnþ1 ¼ m�;nþ1 �r/nþ1; ð49Þ

where
r � r/nþ1

qnþ1

� �
¼ r � m�;nþ1

qnþ1

� �
: ð50Þ
At solid wall boundaries, Neumann boundary conditions are enforced on $/n+1 in the solution of Eq. (50) so
that the normal component of mn+1 is zero at the boundary. No conditions are enforced on either m*,n+1 or
qn+1. The spatial discretization of boundary conditions is discussed in Section 3.2.4. Finally, using Eq. (28), a
first-order temporal approximation to $pn+1 is given by
rpnþ1 ¼ rqn þr/nþ1

Dt
: ð51Þ
This first-order procedure serves as the predictor step of the deferred correction method described in Section
3.3. A very similar procedure is used in the correction iterations. The SDC method produces accurate values of
m* and q, at intermediate substeps from which values of v and $/ are computed using Qq. Once the deferred
correction iterations are complete, the pressure is updated using the intermediate values of $/ and a fourth-
order accurate approximation of Eq. (35). Finally, the value of m*,n+1 is reset by subtracting $/n+1 to produce
the starting value for the next time step.

At the beginning of each time step, the value of the explicit function q(x, t) needs to be determined. As is the
case for impulse variable methods for the incompressible Euler equations, in the current setting the extent to
which q approximates the pressure p affects the accuracy of the numerical solution very little. As explained in
[11], the accuracy of q as an approximation to p does play a role when choosing the boundary conditions for
the auxiliary variable if viscous terms (and hence a no-slip boundary condition) are included in the equations.
Here q is assigned the value of the pressure at the beginning of the time step, namely pn. As explained in Sec-
tion 3.3, since q is held constant during the SDC iterations, the explicit form of q only appears in the predictor
phase.
3.2. Finite-volume discretization

Many popular methods in use today for the zero-Mach number equations utilize a discretization strategy
which is closely related to methods first developed for hyperbolic conservations laws in general, and the com-
pressible Euler equations in particular. One particularly successful strategy is based on a finite-volume discret-
ization of the equations of motion in conservation form for mass, momentum, and total energy, [67,68,76].
This approach utilizes the cell-average values of physical quantities as the discretization variables which are
governed by an equation involving cell edge fluxes. Numerical methods based on a finite-volume discretization
update cell averages by computing an approximation to the time–space integral of the flux function at cell
edges. A popular class of methods in use today employs a second-order spatial and temporal discretization
based on an extension of Godunov’s method (see e.g. [75,18,68,76]).

In such second-order methods, the time–space integral of the flux is in essence approximated by the mid-
point rule. More specifically, the goal is to compute time and space centered values for the flux function which
are used to approximate the integral. In order to achieve fourth-order spatial and temporal accuracy, the
method here combines a spectral deferred corrections approach in time (which can be thought of as an
approximation to the Gauss–Labatto quadrature rule) with a rather straightforward numerical quadrature
of the cell-edge fluxes. This approach is only appropriate for locally Cartesian grids and smooth solutions.
Extending this procedure to robustly treat non-smooth solutions using limiters as in the PPM method [19]
or ENO-type flux calculations [69,70] is a topic of current research.

The main obstacle in extending the finite-volume approach for hyperbolic problems to the zero-Mach num-
ber case is that the advective velocities used to calculate cell edge fluxes must be adjusted so that the divergence
constraint is satisfied. A popular strategy is to apply a discrete projection operator to cell edge velocities which
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is equivalent to including an approximation to the non-local evolution of the pressure term [7,62,1,67,68]. The
numerical projection is discussed in Section 3.2.5.

3.2.1. Notation and formulation
To facilitate the explanation, several notational conventions are first introduced. For ease of presentation,

we assume that the physical domain is two-dimensional and is divided into a uniform array of cells of width
and height h. Let the cell with center at (xi,yj) be denoted by the pair (i, j), and let the half integer subscripts
i + 1/2 and j + 1/2 denote a shift by distance h/2 in the x- and y-direction respectively. The extension to rect-
angular cells and three dimensions is straightforward.

The finite-volume approach is based on an evolution equation for cell averages. For some quantity such as
q(x,y, t), define
�qðxi; yj; tÞ ¼
1

h2

Z xiþ1=2

xi�1=2

Z yjþ1=2

yj�1=2

qðx; y; tÞdy dx: ð52Þ
Similarly, let the average of a quantity over a cell edge be denoted by a tilde. Specifically,
~qðxiþ1=2; yj; tÞ ¼
1

h

Z yjþ1=2

yj�1=2

qðxiþ1=2; y; tÞdy ð53Þ
and
~qðxi; yjþ1=2; tÞ ¼
1

h

Z xiþ1=2

xi�1=2

qðx; yjþ1=2; tÞdx: ð54Þ
As a further notational convenience, we also use a tilde without index shifting when referring to the cell-edge
averages of a vector quantity when the first component of the vector is averaged over the (i + 1/2, j) cell edge
and the second component is averaged over the (i, j + 1/2) edge. This convention will also be followed for gra-
dients, hence for example,
r~/ðxi; yj; tÞ ¼ ð~/xðxiþ1=2; yj; tÞ; ~/yðxi; yjþ1=2; tÞÞ: ð55Þ
To specify the finite-volume formulation of the conservation law
Qt þr � F ðQÞ ¼ 0; ð56Þ

where Q(x,y, t) is the vector of conserved quantities and F(Q) = (f(Q),g(Q)) is the flux function, we integrate
the equation over the computational cells and use the divergence theorem to attain
Qtðxi; yj; tÞ þ
1

h2

Z
�i;j

F ðQðx; y; tÞÞ ¼ 0; ð57Þ
where the flux integral above is defined as
Z
�i;j

F ðQÞ ¼
Z yjþ1=2

yj�1=2

f ðQðxiþ1=2; y; tÞÞ � f ðQðxi�1=2; y; tÞÞdy þ
Z xiþ1=2

xi�1=2

gðQðx; yjþ1=2; tÞÞ

� gðQðx; yj�1=2; tÞÞdx: ð58Þ
Using the definitions of the edge average in Eq. (53) and (54)
Z
�i;j

F ðQðx; y; tÞÞ ¼ hð~f ðQðxiþ1=2; yj; tÞÞ � ~f ðQðxi�1=2; yj; tÞÞÞ þ hð~gðQðxi; yjþ1=2ÞÞ � ~gðQðxi; yj�1=2ÞÞÞ: ð59Þ
Therefore,
Qtðxi; yj; tÞ þ
~f ðQðxiþ1=2; yj; tÞÞ � ~f ðQðxi�1=2; yj; tÞÞ

h
þ

~gðQðxi; yjþ1=2ÞÞ � ~gðQðxi; yj�1=2ÞÞ
h

¼ 0: ð60Þ
Since Eq. (60) resembles a finite-difference approximation to Eq. (56), we introduce an additional notational
convention by defining ~r� as
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~r � eF ðQðxi; yj; tÞÞ ¼
1

h2

Z
�i;j

F ðQðx; y; tÞÞ: ð61Þ
Hence, by suppressing the (i, j) indices we arrive at
Qt þ ~r � eF ðQÞ ¼ 0: ð62Þ

It is important to note that the various forms of the equations above are mathematically exact, i.e. no numer-
ical approximations have been introduced up to this point.

In describing the discretization of Eq. (62), numerical approximations are distinguished by the use of sub-
scripts and superscripts. For example, the approximation to the cell-centered value q(xi,yj, tn) will be denoted
qn

ij. Superscripts or subscripts are suppressed when the meaning is apparent. This convention carries over to
cell- or edge-averaged quantities as well, e.g.
~qn
iþ1=2;j � ~qðxiþ1=2; yj; tnÞ:
In order to implement a numerical method based on the above finite-volume formulation, given cell average
quantities Q, it is necessary to construct an accurate approximation of the edge averages of the flux function,
namely eF ðQÞ. Our approach proceeds in two separate steps:

(1) Computing the edge averages of conserved quantities eQ from the cell averages Q.
(2) Computing the edge averages of the flux function eF ðQÞ from the edge averages eQ.

3.2.2. Computing edge averages of conserved variables

Given cell average values �/, a fourth-order approximation to ~/ at the left cell edge is given by
~/iþ1=2;j ¼
��/i�1;j þ 7ð�/i;j þ �/iþ1;jÞ � �/iþ2;j

12
: ð63Þ
This approximation is derived by simply integrating the standard one-dimensional formula in the y-direction.
The one-dimensional version of this equation forms the basis of the piecewise parabolic method (PPM)

[19] as well as the conservative one-dimensional method based on deferred corrections presented in [40].
In both of these papers, limiters are employed in the presence of discontinuities or sharp gradients in the
solution which locally reduces the order of accuracy of the numerical method in favor of avoiding oscil-
lations in the numerical solution. Limiters then produce two distinct cell-edge values which are considered
the left and right states of a Riemann problem whose solution defines the edge value. We have experi-
mented with the use of limiters and Riemann problems in two dimensions for the current method as well,
but since the current work focuses on demonstrating higher-order spatial and temporal accuracy, the
results will be presented in the future.

3.2.3. Computing edge averages of the fluxes

In order to compute higher-order accurate values of edge averages of the flux functions, it is necessary to be
able to compute the edge average of the products and quotients of variables appearing in Eqs. (30)–(32). The
primary difficulty in building higher-order finite-volume methods is that the edge average of a product (or
quotient) is not equal to the product (or quotient) of edge averages.

The goal here is to express edge averages of quotients or products as the quotient or product of the edge
averages plus a correction term which must be computed by applying a stencil to neighboring edge averages.
To derive a stencil for the correction we first form piecewise polynomial interpolants to a quantity given edge
averages. For example, the expansion for an arbitrary quantity / on the cell edge is given by the power series
/ðxiþ1=2; yÞ � /0 þ /1ðy � yjÞ þ /2ðy � yjÞ
2 � � � ð64Þ
The coefficients /k, are computed using difference stencils discussed below. Given a similar expansion for the
quantity q, using the exact integral of the series expansion for the quotient of polynomials yields the following
stencil for the edge average of a quotient.
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e/
q

 !
iþ1=2;j

¼
~/iþ1=2;j

~qiþ1=2;j
þ h2

12
/0

q2
1

q3
0

� /1

q1

q2
0

� �
þ h4

720
/0

9q0q4 � 5q2
2

q3
0

þ /2

5q2

q2
0

� /4

9

q0

� �
þOðh6Þ: ð65Þ
Suppressing the indices, and using the fact that
~/ ¼ /0 þ
h2

12
/2 þ

h4

80
/4 þOðh6Þ ð66Þ
(and likewise for ~q), we can eliminate the /0 and q0 terms and write
e/
q

 !
¼

~/
~q
þ h2

12

~/q2
1

~q3
� /1q1

~q2

 !
þOðh4Þ: ð67Þ
Similarly,
ðf/qÞ ¼ ~/~qþ h2

12
/1q1 þOðh4Þ: ð68Þ
The stencils approximating the polynomial coefficients are as follows:
/1 ¼
�5~/iþ1=2;jþ2 þ 34ð~/iþ1=2;jþ1 � ~/iþ1=2;j�1Þ þ 5~/iþ1=2;j�2

48h
;

/2 ¼
�~/iþ1=2;jþ2 þ 12~/iþ1=2;jþ1 � 22~/iþ1=2;j þ 12~/iþ1=2;j�1 � ~/iþ1=2;j�2

16h2
:

These formulas can also be ‘‘limited’’ in the same sense as the PPM procedure in areas in which the solution is
non-smooth.

During the projection step of the algorithm (see Section 3.2.5) it is also necessary to compute edge averages
of spatial derivatives. To compute the average over an edge of a derivative normal to the edge using cell aver-
ages we use the fourth-order formula
ð~/xÞiþ1=2;j ¼
�/i�1;j þ 15ð��/i;j þ �/iþ1;jÞ � �/iþ2;j

12h
: ð69Þ
Note that the cell average of a derivative is analytically equal to the centered difference of edge averages, i.e.
ð�/xÞi;j ¼
~/iþ1=2;j � ~/i�1=2;j

h
: ð70Þ
Substituting the edge average formula gives
ð�/xÞi;j ¼
�/i�2;j þ 8ð��/i�1;j þ �/iþ1;jÞ � �/iþ2;j

12h
; ð71Þ
which is the same as the fourth-order finite-difference formula for the derivative.

3.2.4. Stencils near the computational boundary

In the implementation, we employ ghost cells around the numerical domain so that the above stencils can
be used at all cells and cell edges inside the domain. In all cases, two ghost cells must be assigned values, and
we consider here only periodic or solid wall boundary conditions. For periodic boundary conditions, the value
in the cells are set using periodicity, but in the case of solid wall boundary conditions, the procedure for setting
ghost cell values depends on what is known about the numerical quantity for which the ghost cell is being set.
Three distinct cases occur: the value of the quantity is known at the boundary, the normal derivative of the
quantity is known at the boundary, or no information about the quantity is known at the boundary, in which
case the value at the boundary is extrapolated. In general, the first of the two constraints that define the value
of the two ghost cells comes from the known boundary conditions and the second from an extrapolation
condition.
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For example, consider the setting of ghost cells before the cell-edge averages of the conserved quantities are
computed using Eq. (63). Fig. 1, shows the case in the lower y-direction. Assume that the value of the cell aver-
age of some quantity w is known at the boundary (denoted ~wi;j�1=2), either from the prescribed boundary con-
ditions, or from extrapolation from the interior. One constraint on the ghost-cells is that applying Eq. (63)
gives the correct value for ~wi;j�1=2, i.e.
~wi;j�1=2 ¼
��wi;j�2 þ 7�wi;j�1 þ 7�wi;j � �wi;jþ1

12
: ð72Þ
The second condition comes from a fourth-order extrapolation stencil,
��wi;j�2 þ 4�wi;j�1 � 6�wi;j þ 4�wi;jþ1 � �wi;jþ2 ¼ 0: ð73Þ

Solving these two equations for �wi;j�1 gives
�wi;j�1 ¼
12~wi;j�1=2 � 13�wi;j þ 5�wi;jþ1 � 1�wi;jþ2

3
: ð74Þ
The value of �wi;j�2 can then be set using Eq. (73).
In the case that the normal derivative of the quantity is prescribed at the cell edge (as for / in the projec-

tion), the above procedure is modified to make use of this condition. Let ð~wxÞi;j�1=2, be the normal derivative at
the boundary. Then Eq. (72) is replaced by enforcing Eq. (69), i.e.
ð~wxÞi;j�1=2 ¼
~wi;j�2 � 15~wi;j�1 þ 15~wi;j � ~wi;jþ1

12Dy
ð75Þ
and a fifth-order extrapolation stencil.
It is also necessary at times to set ghost values of cell-edge average quantities, for example in the compu-

tation of the stencils in Eqs. (67) and (68). Fig. 2 shows the layout of the data in this case. The same procedure
described above is used to compute cell-edge ghost cells simply by replacing known edge-average values at the
boundary (~wi;j�1=2 or ð~wxÞi;j�1=2), by point values at cell corner on the boundary (wi+1/2,j�1/2 or (wy)i+1/2,j�1/2).

3.2.5. The numerical projection

In methods for the zero-Mach equations based on schemes originally designed for hyperbolic problems, cell
edge fluxes must be modified to account for the divergence constraint. A common strategy is to first calculate
time-centered quantities, and then to apply a variable density projection to exactly enforce a local discrete
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divergence constraint [7,62,1,67,68,76]. This has the attractive features that nonlinear terms can be computed
in conservation form and that advected quantities which are constant in some region will remain locally con-
stant (often referred to as free-stream preservation). In addition to the projection on time-centered cell edge
velocities, the methods cited above also utilize a second projection step applied to the updated cell average
values in order to again enforce the divergence constraint as well as provide an update to the pressure term.
The schemes in [7,67,68,76] include an exact second projection step, i.e., their cell-centered velocity divergences
are controlled up to the error of the elliptic pressure solves associated with the projections. In addition, Vater’s
scheme, [76], features a compact stencil, and its projection step is inf-sup-stable.

In the current method, we use a discrete version of the variable density projection Qq defined in Section 2.4.
This requires solving a discrete version of Eq. (29).
~r �
gr/
q

 !
¼ ~r � ~u�; ð76Þ
where
~u� ¼ m�

q
ð77Þ
is computed using the division formula (67). Then
~u ¼ ~u� �
gr/
q

 !
ð78Þ
is divergence-free.
In the left hand side of Eq. (76), the divergence operator acts on the cell edge average of $//q. This is

defined by using Eq. (69) and the division formula (67), hence the variable being solved for is the cell average
�/. This yields a 25 point stencil for the discrete operator. When solid wall boundary conditions are present, the
boundary condition
ð~m� � ~r�/Þ � n̂ ¼ 0 ð79Þ

is enforced.

Eq. (76) is solved using a standard multigrid approach. Gauss–Seidel relaxation is used as a relaxation
scheme and a reduction in the magnitude of the residual of approximately a factor of ten for each V-cycle
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is observed. Note that during the later SDC iterations, the value of �/ from the previous SDC iteration is a very
good initial guess for the multigrid solver and fewer iterations are required than during the prediction sweep.

Note that in the parlance of projection methods, we are using an ‘‘exact’’ projection, i.e. the velocities sat-
isfy a discrete divergence constraint up to the accuracy of the elliptic solver. However, in the finite-volume
discretization, both the normal and tangential velocities are required at each cell edge. The tangential velocities
at cell edges are projected by subtracting a centered average of the appropriate derivative of /. The tangential
velocities do not satisfy any discrete divergence constraint.

One important consequence of using the deferred correction strategy is that the numerical variables repre-
senting cell averages and cell edge fluxes are always computed at the same time level (i.e. there is no time-cen-
tering of fluxes as in most second-order Godunov type schemes). In the context of zero-Mach number flows,
the implication of this is that the second type of projection applied to cell averages which is discussed above is
not needed to enforce a divergence constraint.

3.3. Spectral deferred corrections

In [24], a variant of the traditional deferred and defect correction methods [78,61,60] is presented
which allows the construction of stable numerical methods for ordinary differentials equations with, in
principle, arbitrarily high order of accuracy. These methods, called spectral deferred corrections (SDC),
proceed as traditional deferred/defect correction by first using a standard numerical method to compute
a provisional solution at a set of substeps within a given time step. Then, an equation for the correction
to this provisional solution is constructed and also approximated on the substeps with a simple numerical
scheme.

In theory, one could employ any higher-order method for the temporal integration of the auxiliary variable
equation. There are two main reasons why an SDC method is utilized here. First, at the end of each time step,
the pressure is updated using the predicted pressure q and the potentials / from the projection steps by an
approximation to Eq. (28). Therefore the time gradient of / must be computed. SDC methods provide the
values of / (with full order of accuracy) at each of the substeps, hence this time derivative can readily be
computed.

Secondly, the explicit SDC approach used here can be easily modified to include an implicit or multiple
implicit terms in the equation, and such semi- or multi-implicit variants of SDC have been shown to compare
favorably to approaches based on Runge–Kutta or other methods on ODE test problems (see [42,51,48,41] for
specific comparisons). We plan on utilizing the method presented here as the basis for a method for the react-
ing zero-Mach number equations where a multi-implicit SDC approach [10,40] will be used. Such an approach
allows for the diffusion and reaction terms to each be handled separately (and if desired with different time
steps), while still achieving higher-order accuracy in time.

We briefly describe the SDC procedure here, for details see [24] or the citations above. Consider the Picard
integral form of Eq. (62) for a given time step [tn, tn+1]
Qnþ1
i;j ¼ Qn

i;j �
Z tnþ1

tn

~r � eF ðQÞi;j dt: ð80Þ
For notational ease, define F ðQÞ to be the numerical procedure used to approximate the finite-volume flux,
i.e.,
F ðQÞi;j � � ~r � eF ðQÞi;j: ð81Þ
Let [tn,tn+1] be subdivided using the points t0, t1, t2, . . . , t4, where
tn ¼ t0 < t1 < t2 � � � < t4 6 tnþ1 ð82Þ

and the points tm form the Gauss–Lobatto quadrature nodes. Although formal fourth-order accuracy for an
SDC method applied to a standard ODE can be achieved with fewer nodes, here we use five Lobatto nodes so
that a fourth-order approximation of /t for Eq. (35) can be computed using the intermediate values.

The explicit SDC method proceeds by first computing a provisional solution �Q0;m at the intermediate points
tm, m = 0, . . . , 4 using the standard forward Euler scheme
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Q0;mþ1
i;j ¼ Q0;m

i;j þ DtmF ðQ0;mÞi;j: ð83Þ
Next, an approximation to the residual function
�ðtmÞ ¼ Q0;n þ
Z tm

tn

Fðs;Q0Þds� Q0ðtmÞ ð84Þ
is computed by calculating the exact integral of the interpolating polynomial for Fðs;Q0ðsÞÞ at the interme-
diate nodes tm. Using the residual, a Picard-type integral equation for the error
dðtÞ ¼ QðtÞ � Q0ðtÞ ð85Þ

is
dðtmÞ ¼
Z tm

tn

½F ðQ0 þ dÞ � F ðQ0Þ�dsþ �ðtmÞ: ð86Þ
The correction equation is then solved using a procedure similar to forward Euler
dmþ1 ¼ dm þ Dtm½FðQ0;m þ dmÞ � F ðQ0;mÞ� þ �ðtmþ1Þ � �ðtmÞ: ð87Þ
Note that unlike the classical deferred or defect correction methods in [78,61,60], the equation for d(t) is not
written here as an ODE. Also, because of the difference of the flux terms in Eq. (86), terms depending only on
time, such as the approximation to the pressure q, do not appear in the correction update except through the
term �(tm).

Finally, the provisional solution is improved by setting
Q1;m ¼ Q0;m þ dm: ð88Þ

This procedure can then be iterated to produce a series of more accurate approximations. Each iteration of the
correction equation raises the formal temporal order of accuracy of the scheme by one, therefore for a fourth-
order method, three iterations of the correction equation are needed.

In the method described here, the deferred correction approach is applied only in time. Other approaches
have been suggested which apply deferred corrections in both time and space [31,38]. The goal of such an
approach is to avoid the use of higher-order spatial discretizations by using compact second-order stencils
and achieving higher-order spatial accuracy through deferred corrections. We refer the reader to the above
references for details.

3.4. Summary

Here we provide a concise summary of one time step of the numerical method. To compute the flux terms
eF 1 ¼ � ~r�ðfqvÞ; ð89ÞeF 2 ¼ � ~r�ð gqv � v þ I~qÞ ð90Þ
used in the finite-volume method update, the following steps are used:

(1a) Compute cell edge averages ~m�, ~q, and ~q from cell averages �m�, �q, and �q using Eq. (63).
(2a) Compute ~v� using ~m� and ~q and the division formula (67).
(3a) Solve the variable density Poisson Eq. (76) to yield �/.
(4a) Compute divergence-free cell edge velocities ~v by Eqs. (67) and (78).
(5a) Use formula (68) to compute the nonlinear flux terms in Eqs. (89) and (90) from ~v, ~m�, ~q, and ~q.

The time integration scheme proceeds by first computing a prediction for the cell average pressure in the
coming substeps. Here the simplest approximation �qm ¼ �pn is used. Next a provisional solution Q0 is computed
at each substep using the forward Euler scheme Eq. (83). Then three iterations of the correction equation are
performed by
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(1b) Computing the residual �(tm) using Eq. (84).
(2b) Computing the approximations dm using Eq. (87).
(3b) Setting Qkþ1;m ¼ Qk;m þ dm.

At the end of each full time step, two additional tasks are completed:

(1c) Compute an update to the �pnþ1 using intermediate substep values by computing the derivative of the
polynomial interpolant �/m to approximate �/nþ1

t .
(2c) Reset �m�;nþ1 by subtracting r�/nþ1 computed using Eq. (71).

3.5. Why conservation and what is new?

In this subsection we point out why conservation of mass, momentum, and energy are central to the present
approach, and we point the reader to several earlier publications on related numerical schemes which also use
full conservation form.

The auxiliary variable, spectral deferred correction approach to constructing high-order accurate incom-
pressible flow solvers has been developed originally for constant density flows [50,51]. The starting point
for these developments are the non-conservative, co-located-variable or staggered-grid projection methods
which use velocity components as the primary unknowns, [15,14,17,72,7,62]. Extension of the auxiliary vari-
able technique to zero Mach number, variable density flows proved difficult, largely because of the nonlinear-
ity of the pressure gradient term, $p/q, in the momentum equation. Here we adopt the conservative
formulation for mass, momentum, and energy as proposed in [27,67,68,76], for which the pressure gradient
term, $p, is linear instead, and an auxiliary variable formulation is possible.

Fully conservative formulations have been adopted previously in the context of constructing Mach-uniform
algorithms. Bijl and Wesseling, [8,73], and Park et al. [58] do use a fully conservative discretization for each of
the conserved quantities separately, yet they formulate the balances on a staggered scheme of control volumes.
Nerinckx and Dick, [55], formulate an all-Mach number solver which relies on conservation of mass, momen-
tum, and energy for the primary control volumes of a given grid. They emphasize possible efficiency gains
associated with coupled equations for pressure and temperature corrections in the presence of molecular dif-
fusion or in the presence of strong gravity. The conservative schemes in [8,73,55] may all be considered as akin
to projection methods in the sense that they involve merely one or two elliptic pressure (and temperature)
solves per time step. Park and Munz [58] test a number of alternative time integration schemes, including sec-
ond-order three time level Runge–Kutta and backward differentiation formulae (BDF), which differ concep-
tually from projection schemes. Yet, the semi-implicit versions of their schemes require only linear elliptic
solves for a perturbation pressure.

Reisner et al. [64] introduce a semi-implicit (linearly implicit) scheme for meteorological applications
that relies on Rosenbrock-type time integration. An approximate multiplicative decomposition of the
matrix multiplying the new time level vector of unknowns in the implicit scheme allows the flexibility
to choose the set of variables that is to be treated implicitly. If the scheme is adjusted to discretize only
the pressure implicitly, it reduces to a projection-type method formulated in terms of density, momentum,
and potential temperature (entropy). Knoth [37] develops a version of this scheme which uses the conser-
vative form of the momentum equation in a similar way as done in the present work. See also Lang [39]
for related higher-order adaptive discretization strategies for constant density incompressible flow using
Rosenbrock-type time discretizations.
4. Numerical tests

In this section, we present three numerical examples to illustrate the accuracy and convergence of our pro-
posed method. The examples chosen here have smoothly varying solutions in space so that the errors due to
the temporal integration contribute to the overall error.
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4.1. Traveling wave solution to the inviscid Euler equations

Here we test our fourth-order auxiliary variable projection method on a traveling wave solution to the
inviscid Euler equations as in e.g. [49,1]. The density field is initialized to q(x,y, 0) ” 1, and should stay con-
stant for this problem. The exact solution to the velocity and pressure are
Fig. 3.
corresp
uðx; y; tÞ ¼ 0:75þ 0:25 cosð2pðx� 0:75tÞÞ sinð2pðy � 0:75tÞÞ;
vðx; y; tÞ ¼ 0:75� 0:25 sinð2pðx� 0:75tÞÞ cosð2pðy � 0:75tÞÞ;

pðx; y; tÞ ¼ � 1

64
ðcosð4pðx� 0:75tÞÞ þ cosð4pðy � 0:75tÞÞÞ:

ð91Þ
The numerical solutions are initialized by setting t = 0 in (91) and using Simpson’s rule to compute cell aver-
ages. The computational domain is [0, 1] · [0,1], and periodic boundary conditions are imposed in both coor-
dinate directions. Fig. 3 is produced by running the code for 32 · 32, 64 · 64, and 128 · 128 grids to a final
time of T = 0.5 using Dt = Dx. Fig. 3 displays the L1 norm of the errors in momentum and $p and clearly
indicates the fourth-order accuracy of the method.

To further demonstrate that the method is fourth-order in time and space, the same example is run again
using both a third and fourth-order method. The solution is computed to T = 0.1 on N · N grids for N = 64,
96, 128, 192 and 256. The third-order method is constructed by using the exact same spatial resolution but
performing one fewer iteration of the correction step in the SDC algorithm. The data in Fig. 4 demonstrates
the different temporal orders of accuracy for the momentum field.

4.2. Traveling vortex problem

Here we test our method on a problem whose exact solution is known; however, in this instance the
density is no longer constant in space and time. The problem consists of a smooth traveling vortex with
non-constant density. This is in essence a smooth version of Gresho’s vortex test [29,44]. The problem
consists of a rotating vortex initially placed at (0.5,0.5) and moving with a prescribed constant speed.
The density is initialized as a smooth radially symmetric bump at (0.5,0.5) and also moves with the
vortex.
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Specifically,
qðx; y; tÞ ¼ qc þ 1
2
ð1� r2Þ6 if r < 1;

qc otherwise;

(
ð92Þ

uðx; y; tÞ ¼ �1024 sinðhÞð1� rÞ6r6 þ uc if r < 1;

uc otherwise;

(
ð93Þ

vðx; y; tÞ ¼ 1024 sinðhÞð1� rÞ6r6 þ vc ifr < 1;

vc otherwise:

(
ð94Þ
Here uc and vc are the prescribed translation speeds of the vortex which will vary for different test cases, so that
xc(t) = 0.5 + t uc and yc(t) = 0.5 + t vc give the center of the vortex at time t. The radial distance is scaled by
the radius of the vortex R = 0.4, or
r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� xcðtÞÞ2 þ ðy � ycðtÞÞ

2
q

=R:
Likewise, h is defined as h ¼ arctanðy�ycðtÞ
x�xcðtÞÞ. The constant qc is chosen to be 1/2 for all computations.

The pressure field can be derived by considering the centripetal force and is given by
pðx; y; tÞ ¼
pðrÞ � pð1Þ ifr < 1;

0 otherwise:

�
ð95Þ
where
pðrÞ ¼ 10242 1

72
r36 � 6

35
r35 þ 15

17
r34 � 74

33
r33 þ 57

32
r32 þ 174

31
r31

�
� 259

15
r30 þ 450

29
r29 þ 153

8
r28

� 1564

27
r27 þ 510

13
r26 þ 204

5
r25 � 1473

16
r24 þ 1014

23
r23 þ 1053

22
r22 � 558

7
r21 þ 783

20
r20 þ 54

19
r19

� 38

9
r18 � 222

17
r17 þ 609

32
r16 � 184

15
r15 þ 9

2
r14 � 12

13
r13 þ 1

12
r12

�
: ð96Þ
We initialize the conservative variables using Eqs. (92)–(95) and Simpson’s rule. Contour plots of the initial
conditions are given in Fig. 5 for uc = 1 and vc = 1. For all tests below, Dt = Dx.



Fig. 5. Initial conditions for the vortex Problem (4.2.1) with uc = 1, vc = 1 on a 192 · 192 mesh. The upper left figure represents the
density, the upper right figure represents the x-momentum, the lower left figure represents the y-momentum, and the lower right figure
represents py.
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4.2.1. Vortex moving diagonally in a doubly periodic domain

For the first test, we run the code in the unit square with periodic boundary conditions in both coordinate
directions. The advection velocities are set to uc = vc = 1 so that the vortex travels in a diagonal direction. We
perform the computation until the flow completes one period which corresponds to T = 1, hence the exact
solution is identical to the initial conditions. Fig. 5 shows the initial conditions produced using a 192 · 192
grid, and Fig. 6 shows the computed final solution after one period. It is evident from the Fig. 6 that the flow
features are captured accurately. In Fig. 7 and Table 1, we demonstrate the accuracy and the convergence rates
of our method for different variables. Here N · N grids for N = 64,96,128,192 are used when producing Fig. 7
and Table 1. Fig. 7 and Table 1 clearly indicate the fourth-order of accuracy of our method.

4.2.2. Vortex moving horizontally in a doubly periodic domain

For the next example, the vortex is given by velocities of uc = 1 and vc = 0, hence the vortex moves in x-
direction only. The test is included to compare with the following case in which solid wall boundary conditions
are imposed. Fig. 8 shows the computed solutions at T = 1.0. Again, it is evident from Fig. 8 that our method
captures the flow features accurately. Fig. 10 illustrates error in several principle variables at T = 1.0 and with
a 128 · 128 mesh. More errors using N · N grids for N = 64, 96, 128 and 192 are calculated to perform an
accuracy analysis. Fig. 9 and Table 2, produced from these errors, clearly demonstrate the fourth-order accu-
racy of our method.

4.2.3. Vortex problem with solid wall boundary conditions

Here we modify the problem in 4.2.2 in that solid wall boundary conditions are enforced in the y-coordinate
direction with periodic boundary conditions in the x-direction. The purpose here is to demonstrate that the



Fig. 6. Computed solution to the vortex problem (4.2.1) with uc = 1 and vc = 1 computed at T = 1.0 with 192 · 192 mesh. The upper left
figure represents the density, the upper right figure represents the x-momentum, the lower left figure represents the y-momentum, and the
lower right figure represents py.
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Fig. 7. L1 errors versus number of grid points for the Problem 4.2.1 with uc = 1 and vc = 1 at T = 1.0.
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imposition of solid wall boundary conditions does not affect the accuracy of the numerical simulations com-
pared to those in a doubly periodic domain. The problem is again run until T = 1.0, and the errors are plotted
in Fig. 11. Comparing these plots to those in Fig. 10, clearly shows that the imposition of solid wall boundaries



Fig. 8. Computed solution at T = 1.0 for the problem 4.2.2 with a 192 · 192 mesh. Here uc = 1 and vc = 0, thus the vortex moves in the
horizontal direction. The upper left figure represents the density, the upper right figure represents the x-momentum, the lower left figure
represents the y-momentum, and the lower right figure represents py.

Table 1
Convergence rates for the problem 4.2.1 computed by comparing the error when using grid size h with that when using grid size 2h

Mesh refinement 2h = 1/64 Mesh refinement 2h = 1/96

Momentum 3.70 3.72
Density 3.85 3.82
Grad p 4.16 4.07
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does not affect the accuracy of the method for this problem. Fig. 12 shows the convergence rates of our
method for this problem and again indicates fourth-order convergence.

4.2.4. Long-time coarse grid evolution

In the spirit of the vortex test case in [28,44], we present results of a longer-time run with poor spatial res-
olution. Specifically, the example in Section 4.2.3 is repeated using a coarse 32 · 32 grid to compute the solu-
tion after three revolutions (i.e. T = 3.0). The results are shown Fig. 13. Even at this coarse resolution, the
pertinent features of the vortex are well preserved without the use of limiters of any sort.

4.3. Gravity driven instability

For the final problem we present an example with more complicated dynamics. The initial conditions con-
sist of a shear layer in a stably stratified density field in a domain with periodic boundary conditions in the x-
direction and solid wall boundary conditions in the y-directions. A gravity term is included in the momentum
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Fig. 9. L1 errors versus number of grid points for the Problem 4.2.2 at T = 1.0.

Table 2
Convergence rates for the Problem 4.2.2 computed by comparing the error when using grid size h with that when using grid size 2h

Mesh refinement 2h = 1/64 Mesh refinement 2h = 1/96

Momentum 3.85 3.76
Density 3.95 3.49
Grad p 4.17 4.22
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equation, and two perturbations to the density field driven by gravity create an instability in the shear layer
which then rolls up into a main vortex and a smaller vortex.

Specifically, the initial velocity is given by the shear layer
uðx; y; 0Þ ¼ 1

2
tanh

y � 0:5

�

� �
; ð97Þ

vðx; y; 0Þ ¼ 0; ð98Þ
with � = 1/50. The density is given by
qðx; y; 0Þ ¼ 0:5� cðy � 0:5Þ3 þ
X10

N¼�10

fc1e�r2
1 � c2e�r2

2g; ð99Þ
where
r2
i ¼

x� xi � N
r

� �2

þ y � yi

r

� �2

: ð100Þ
In these initial conditions, the background density is a stable stratification defined by a cubic polynomial in y.
The strength of the stratification is determined by the constant c. The density perturbations are Gaussians cen-
tered at (x1,y1) = (0.5,0.75) and (x2,y2) = (0.5,0.25) with strength c1 and c2 and width determined by r.

Note that we make the density periodic in the x-direction in Eq. (99) by summing the periodic images of the
density profile originally defined in [0,1] · [0,1]. Since the perturbations decay rapidly, including ten images in
each direction is more than sufficient to achieve machine precision.

4.3.1. Convergence test

To test the convergence of the method for this problem, we compute a series of approximations using
smooth initial data determined by � = 1/10 in (98) and r = 0.1, c = 0.5, c1 = c2 = 0.05 in (99). The final run



Fig. 10. Error plots in the principle variables for the problem 4.2.2. Periodic boundary conditions are enforced in both x- and y-directions.
These plots are produced at T = 1.0 with a 128 · 128 mesh. Here the upper left figure represents the error in density, the upper right figure
represents the error in x-momentum, the lower left figure represents the error in y-momentum, and the lower right figure represents the error
in py.
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time for the convergence analysis is set to T = 0.25. Since no analytical solution is known, convergence rates
are computed by computing the difference between two successive runs in the L1 norm. Convergence rates for
density, momentum and the pressure gradient using grids of size 32 · 32 to 256 · 256 and Dt = Dx are
reported in Tables 3–5. The data indicates that the method is converging with fourth-order accuracy.

4.3.2. Comparison with second-order code

As a final comparison, we compare results computed using the fourth-order method presented here with
those from a second-order numerical method described in [68] (with a modified stencil for the projection steps
following the presentation in [76]). Here we use initial conditions which are poorly resolved on coarse grids,
specifically � = 1/50, r = 0.25 and overall magnitude by the constants c = 0.0156, and c1 = c2 = 0.00156.
These initial conditions were chosen specifically so that coarse grid runs would have difficulty accurately pre-
dicting the time evolution of the vortex formation. Fig. 14 shows the initial conditions and the density and
vorticity solutions at T = 2.5 computed with the fourth-order code on a 128 · 128 grid.

Assuming both the fourth-order code and the second-order code are converging to the same solution
(which the numerical evidence supports), for a sufficiently fine resolution, the fourth-order code will be more
accurate. Mathematically this is saying nothing more than
C4Dt4 < C2Dt2 ð101Þ

for sufficiently small Dt, for any choice of the constants C4 and C2. The point of this example is to demonstrate
that even for relatively coarse grids, the use of the higher-order method can be beneficial. Fig. 15 compares the
computed solutions for the two methods on a 32 · 32 grid. Comparing these figures with Fig. 14, we see that



Fig. 11. Error plots for the problem 4.2.3. Periodic boundary conditions are enforced in x-direction and solid wall boundary conditions
are enforced in y-direction. Plots are produced at T = 1.0 with 128 · 128 mesh. Here the upper left figure represents the error in density, the
upper right figure represents the error in x-momentum, the lower left figure represents the error in y-momentum, and the lower right figure
represents the error in py.
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the second-order method does not predict the instability in the shear layer. The fourth-order method does
slightly better although the emergence of the secondary vortex is missed. Fig. 16 compares the computed
solutions for the two methods on a 64 · 64 grid. At this resolution, both methods are able to predict both
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Fig. 12. L1 errors versus number of grid points for the Problem 4.2.3. T = 1.0.



Table 3
Errors and approximate convergence rates for density for the gravity driven instability problem (4.3.1) computed by comparing the
difference between a solution computed using grid size h with that using grid size 2h

Mesh refinement kqh � q2hkL1 Between mesh Convergence rates

2h = 1/32 4.83 · 10�4

2h = 1/64 3.76 · 10�5 1/32–1/64 3.68
2h = 1/128 2.45 · 10�6 1/64–1/128 3.93

Fig. 13. Computed solution of the problem 4.2.4 at T = 3.0 with using a coarse 32 · 32 mesh. Here the upper left figure represents the
density, the upper right figure represents the x-momentum, the lower left figure represents the y-momentum, and the lower right figure
represents py.

Table 4
Errors and approximate convergence rates for the momentum for the gravity driven instability problem (4.3.1) computed by comparing
the difference between a solution computed using grid size h with that using grid size 2h

Mesh refinement kmh �m2hkL1 Between mesh Convergence rates

2h = 1/32 1.1 · 10�3

2h = 1/64 7.49 · 10�5 1/32–1/64 3.87
2h = 1/128 4.96 · 10�6 1/64–1/128 3.91
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the primary and secondary vortices. Numerical diffusion is evident in the second-order results in that the roll-
up of the shear layer is less than the resolved solution in Fig. 14. For the fourth-order method, the under-res-
olution causes some slight oscillations in the vorticity due to the lack of any form of slope limiting in the finite-
volume treatment of the nonlinear terms.



Table 5
Errors and approximate convergence rates for the pressure gradient for the gravity driven instability problem (4.3.1)

Mesh refinement krph �rp2hkL1 Between mesh Convergence rates

2h = 1/32 2.5 · 10�3

2h = 1/64 1.69 · 10�4 1/321/64 3.88
2h = 1/128 1.03 · 10�5 1/64–1/128 4.03

Fig. 14. Initial conditions and solution at T = 2.5 computed on a 128 · 128 mesh for the gravity driven instability test (Problem 4.3.2).
Here the upper left and right figures represent the initial density and vorticity respectively. The lower left and right figures are the density
and vorticity at T = 2.5.

2038 S.Y. Kadioglu et al. / Journal of Computational Physics 227 (2008) 2012–2043
A comparison between two methods should of course also take into account the computational cost per
time step of the methods. Ideally, one would like to compare the computational cost for a given level of accu-
racy, however, performing such a comparison is not straightforward. We present no timing results for the test
case above, since a comparison using small grids and non-optimized codes are unlikely to give a fair compar-
ison in general. We can however make some general observations regarding accuracy.

	 Given a sufficiently stringent error tolerance and assuming that the computational cost per time step of
each method scales linearly with the number of grid points, the fourth-order method will be more effi-
cient than the second-order method. This again is a simple consequence of Eq. (101). Note that the cost
per time step may not grow linearly if the method is run in parallel and the number of processors is
also increasing.
	 For both methods, the most computationally expensive part of each time step is the solution of the Poisson

equation associated with the projection. For the fourth-order method, sixteen projections are required for
each time step, while only two each time step are needed in the second-order method.



Fig. 15. Comparison of the density and vorticity solutions for the Problem 4.3.2 using a 32 · 32 grid. The two figures on the right are
computed with a second-order method. Those on the left are computed with the fourth-order method described in this paper.
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	 The maximum stable time-step allowed for the fourth-order method is substantially larger than for the sec-
ond-order method. In the above test, the fourth-order method was run with Dt = 3Dx, while the second-
order method Dt � 0.21Dx.
	 For both methods the Poisson equations are solved using multi-grid, but the stencil in the fourth-order case

is larger than in the second-order method. The increase in stencil size does not seem to have a large impact
on the number of V-cycle iterations required for convergence, however, the cost of each multi-grid opera-
tion increases with the size of the stencil. Also, as discussed in Section 3.2.5, the initial guesses for the multi-
grid solves become better as the deferred correction iterations proceed.
	 The fourth-order method has a much higher storage cost due to the necessity of storing the solution values

at substeps. Currently, efficiency on single processor computers often depends sensitively on memory
access. Any large three-dimensional simulation will likely be done on a parallel computer, where costs asso-
ciated with increased storage are machine and implementation dependent.
	 For three-dimensional simulations, a reduction of the grid spacing by one half in each dimension (including

time) leads to a factor of sixteen increase in computational cost, but only a factor of eight in storage. This
suggests that if the computational speed and storage of computers continue to increase at roughly the same
rate, the increased storage overhead for SDC methods will become less important in the future.
5. Discussion

We have presented a novel numerical method for zero-Mach number limit of the compressible gas dynam-
ics equations which combines a conservative fourth-order finite-volume discretization with a new auxiliary
variable formulation of the equations in conservation form. Temporal accuracy is achieved using spectral
deferred corrections.



Fig. 16. Comparison of the density and vorticity solutions for the problem 4.3.2 using a 64 · 64 grid. The two figures on the right are
computed with a second-order method. Those on the left are computed with the fourth-order method described in this paper.
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As mentioned in the introduction, this is the first step in creating a higher-order numerical method for
the reacting zero-Mach number equations. We are currently working on adding species equations and
reaction and diffusion terms to the numerical method pursuing the multi-implicit temporal approach from
[10,40].

Another direction that we are pursuing involves extending the current ideas to the physically important
case where the Mach number is small, but not zero. In this case, there is no specific divergence constraint,
rather the energy equation and the equation of state return. Following the strategy presented in this
paper, one could posit an approximation to the pressure q(x, t) and solve the resulting equations without
regard to the equation of state. However, the natural analog of the auxiliary momentum variable in this
approach will not differ from the true momentum by a pure gradient, and therefore the pressure p(t) can-
not be recovered given an approximate value q(t) and the solution of the auxiliary equation. However, we
are pursuing a strategy in which a sequence of auxiliary variable equations are formed which provide an
iterative improvement of the pressure. These iterations can then be integrated into the deferred corrections
iterations to achieve an efficient method.
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